Chapter 3 (R Lab)

Linear Regression (Lab)

Author

Aditya Dahiya

Published

February 1, 2021

3.6.1 Libraries

library(MASS)
library(ISLR)
library(car)

3.6.2 Simple Linear Regression

data(Boston)
names(Boston)
 [1] "crim"    "zn"      "indus"   "chas"    "nox"     "rm"      "age"    
 [8] "dis"     "rad"     "tax"     "ptratio" "black"   "lstat"   "medv"   
lm.fit <- lm(medv ~ lstat, data = Boston)
attach(Boston)

Displaying the results of simple linear regression of medv on lstat.

lm.fit

Call:
lm(formula = medv ~ lstat, data = Boston)

Coefficients:
(Intercept)        lstat  
      34.55        -0.95  
summary(lm.fit)

Call:
lm(formula = medv ~ lstat, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.168  -3.990  -1.318   2.034  24.500 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 34.55384    0.56263   61.41   <2e-16 ***
lstat       -0.95005    0.03873  -24.53   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared:  0.5441,    Adjusted R-squared:  0.5432 
F-statistic: 601.6 on 1 and 504 DF,  p-value: < 2.2e-16

The contents of lm.fit can be displayed as :—

names(lm.fit)
 [1] "coefficients"  "residuals"     "effects"       "rank"         
 [5] "fitted.values" "assign"        "qr"            "df.residual"  
 [9] "xlevels"       "call"          "terms"         "model"        
coef(lm.fit)
(Intercept)       lstat 
 34.5538409  -0.9500494 
confint(lm.fit)
                2.5 %     97.5 %
(Intercept) 33.448457 35.6592247
lstat       -1.026148 -0.8739505

Using the predict function for predicting the values of medv for a given value(s) of lstat :—

predict(lm.fit, data.frame(lstat=c(5,10,15)), interval = "confidence")
       fit      lwr      upr
1 29.80359 29.00741 30.59978
2 25.05335 24.47413 25.63256
3 20.30310 19.73159 20.87461
predict(lm.fit, data.frame(lstat=c(5,10,15)), interval = "prediction")
       fit       lwr      upr
1 29.80359 17.565675 42.04151
2 25.05335 12.827626 37.27907
3 20.30310  8.077742 32.52846

The plot of medv with lstat along with least squares regression line is as follows:-

par(mfrow=c(2,2))
plot(x=lstat, y=medv)
abline(lm.fit, col="red")
plot(x=lstat, y=medv, pch=20)
plot(x=lstat, y=medv, pch="+")
abline(lm.fit, col="red", lwd=3)
plot(1:20, 1:20, pch=1:20)

Plotting the 4 diagnostic plots of lm.fit:—

par(mfrow=c(2,2))
plot(lm.fit)

Alternatively, we can plot the residuals vs. fitted values; and studentized residuals vs. fitted values as follows: —

par(mfrow=c(1,2))
plot(x=predict(lm.fit), y=residuals(lm.fit))
plot(x=predict(lm.fit), y=rstudent(lm.fit))


Now, we calculate the leverage statistics using hatvalues function. The largest leverage is for the observation number 375 (which.max(hatvalues(lm.fit))). Also, I plot the studentized residuals vs. leverage statistic, just like Fig.3.13(right) in the book :–

par(mfrow=c(1,2))
plot(hatvalues(lm.fit))
plot(x=hatvalues(lm.fit), y=rstudent(lm.fit),
     xlab = "Leverage", ylab="Studentized Residuals")

which.max(hatvalues(lm.fit))
375 
375 

3.6.3 Multiple Linear Regression

Fitting a multiple linear regression as follows:-

lm.fit <- lm(medv ~ lstat + age, data = Boston)
summary(lm.fit)

Call:
lm(formula = medv ~ lstat + age, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.981  -3.978  -1.283   1.968  23.158 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 33.22276    0.73085  45.458  < 2e-16 ***
lstat       -1.03207    0.04819 -21.416  < 2e-16 ***
age          0.03454    0.01223   2.826  0.00491 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.173 on 503 degrees of freedom
Multiple R-squared:  0.5513,    Adjusted R-squared:  0.5495 
F-statistic:   309 on 2 and 503 DF,  p-value: < 2.2e-16

Performing regression of medv on all other variables :—

lm.fit <- lm(medv ~ ., data=Boston)
summary(lm.fit)

Call:
lm(formula = medv ~ ., data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.595  -2.730  -0.518   1.777  26.199 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  3.646e+01  5.103e+00   7.144 3.28e-12 ***
crim        -1.080e-01  3.286e-02  -3.287 0.001087 ** 
zn           4.642e-02  1.373e-02   3.382 0.000778 ***
indus        2.056e-02  6.150e-02   0.334 0.738288    
chas         2.687e+00  8.616e-01   3.118 0.001925 ** 
nox         -1.777e+01  3.820e+00  -4.651 4.25e-06 ***
rm           3.810e+00  4.179e-01   9.116  < 2e-16 ***
age          6.922e-04  1.321e-02   0.052 0.958229    
dis         -1.476e+00  1.995e-01  -7.398 6.01e-13 ***
rad          3.060e-01  6.635e-02   4.613 5.07e-06 ***
tax         -1.233e-02  3.760e-03  -3.280 0.001112 ** 
ptratio     -9.527e-01  1.308e-01  -7.283 1.31e-12 ***
black        9.312e-03  2.686e-03   3.467 0.000573 ***
lstat       -5.248e-01  5.072e-02 -10.347  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared:  0.7406,    Adjusted R-squared:  0.7338 
F-statistic: 108.1 on 13 and 492 DF,  p-value: < 2.2e-16

The components of summary(lm.fit) are :–

names(summary(lm.fit))
 [1] "call"          "terms"         "residuals"     "coefficients" 
 [5] "aliased"       "sigma"         "df"            "r.squared"    
 [9] "adj.r.squared" "fstatistic"    "cov.unscaled" 
summary(lm.fit)$r.squared ; summary(lm.fit)$sigma
[1] 0.7406427
[1] 4.745298

Calculating V.I.F from car::vif() from the car package :—

car::vif(lm.fit)
    crim       zn    indus     chas      nox       rm      age      dis 
1.792192 2.298758 3.991596 1.073995 4.393720 1.933744 3.100826 3.955945 
     rad      tax  ptratio    black    lstat 
7.484496 9.008554 1.799084 1.348521 2.941491 

Excluding one variable (age, which has high p-value) from multiple regression :—

lm.fit1 <- lm(medv ~ . - age, data=Boston)
summary(lm.fit1)

Call:
lm(formula = medv ~ . - age, data = Boston)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.6054  -2.7313  -0.5188   1.7601  26.2243 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  36.436927   5.080119   7.172 2.72e-12 ***
crim         -0.108006   0.032832  -3.290 0.001075 ** 
zn            0.046334   0.013613   3.404 0.000719 ***
indus         0.020562   0.061433   0.335 0.737989    
chas          2.689026   0.859598   3.128 0.001863 ** 
nox         -17.713540   3.679308  -4.814 1.97e-06 ***
rm            3.814394   0.408480   9.338  < 2e-16 ***
dis          -1.478612   0.190611  -7.757 5.03e-14 ***
rad           0.305786   0.066089   4.627 4.75e-06 ***
tax          -0.012329   0.003755  -3.283 0.001099 ** 
ptratio      -0.952211   0.130294  -7.308 1.10e-12 ***
black         0.009321   0.002678   3.481 0.000544 ***
lstat        -0.523852   0.047625 -10.999  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.74 on 493 degrees of freedom
Multiple R-squared:  0.7406,    Adjusted R-squared:  0.7343 
F-statistic: 117.3 on 12 and 493 DF,  p-value: < 2.2e-16

3.6.4 Interaction Terms

Including interaction terms as follows :-

summary(lm(medv ~ lstat*age, data=Boston))

Call:
lm(formula = medv ~ lstat * age, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.806  -4.045  -1.333   2.085  27.552 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 36.0885359  1.4698355  24.553  < 2e-16 ***
lstat       -1.3921168  0.1674555  -8.313 8.78e-16 ***
age         -0.0007209  0.0198792  -0.036   0.9711    
lstat:age    0.0041560  0.0018518   2.244   0.0252 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.149 on 502 degrees of freedom
Multiple R-squared:  0.5557,    Adjusted R-squared:  0.5531 
F-statistic: 209.3 on 3 and 502 DF,  p-value: < 2.2e-16

3.6.5 Non-Linear Transformations of Predictors

lm.fit2 <- lm(medv ~ lstat + I(lstat^2), data=Boston)
summary(lm.fit2)

Call:
lm(formula = medv ~ lstat + I(lstat^2), data = Boston)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.2834  -3.8313  -0.5295   2.3095  25.4148 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 42.862007   0.872084   49.15   <2e-16 ***
lstat       -2.332821   0.123803  -18.84   <2e-16 ***
I(lstat^2)   0.043547   0.003745   11.63   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.524 on 503 degrees of freedom
Multiple R-squared:  0.6407,    Adjusted R-squared:  0.6393 
F-statistic: 448.5 on 2 and 503 DF,  p-value: < 2.2e-16

We use anova() function to quantify how much the quadratic fit is better than linear fit. This is shown as below:

lm.fit <- lm(medv~lstat, data=Boston)
lm.fit2 <- lm(medv ~ lstat + I(lstat^2), data=Boston)
anova(lm.fit, lm.fit2)
Analysis of Variance Table

Model 1: medv ~ lstat
Model 2: medv ~ lstat + I(lstat^2)
  Res.Df   RSS Df Sum of Sq     F    Pr(>F)    
1    504 19472                                 
2    503 15347  1    4125.1 135.2 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hence, the model containing \(lstat^2\) is far superior to the simple linear regression model. This is also shown in the the diagnostic plots as below:

par(mfrow=c(2,2))
plot(lm.fit2)

Now, we use the poly() function with the lm() call to include polynomials of a variable up to any degree.

lm.fit5 <- lm(medv ~ poly(lstat,5), data=Boston)
summary(lm.fit5)

Call:
lm(formula = medv ~ poly(lstat, 5), data = Boston)

Residuals:
     Min       1Q   Median       3Q      Max 
-13.5433  -3.1039  -0.7052   2.0844  27.1153 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)       22.5328     0.2318  97.197  < 2e-16 ***
poly(lstat, 5)1 -152.4595     5.2148 -29.236  < 2e-16 ***
poly(lstat, 5)2   64.2272     5.2148  12.316  < 2e-16 ***
poly(lstat, 5)3  -27.0511     5.2148  -5.187 3.10e-07 ***
poly(lstat, 5)4   25.4517     5.2148   4.881 1.42e-06 ***
poly(lstat, 5)5  -19.2524     5.2148  -3.692 0.000247 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.215 on 500 degrees of freedom
Multiple R-squared:  0.6817,    Adjusted R-squared:  0.6785 
F-statistic: 214.2 on 5 and 500 DF,  p-value: < 2.2e-16

Lastly, a log transformation of the predictor variable.

summary(lm(medv ~ log(lstat), data=Boston))

Call:
lm(formula = medv ~ log(lstat), data = Boston)

Residuals:
     Min       1Q   Median       3Q      Max 
-14.4599  -3.5006  -0.6686   2.1688  26.0129 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  52.1248     0.9652   54.00   <2e-16 ***
log(lstat)  -12.4810     0.3946  -31.63   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.329 on 504 degrees of freedom
Multiple R-squared:  0.6649,    Adjusted R-squared:  0.6643 
F-statistic:  1000 on 1 and 504 DF,  p-value: < 2.2e-16

3.6.6 Qualitative Predictor

Loading the Carseats data set.

data("Carseats")
head(Carseats)
  Sales CompPrice Income Advertising Population Price ShelveLoc Age Education
1  9.50       138     73          11        276   120       Bad  42        17
2 11.22       111     48          16        260    83      Good  65        10
3 10.06       113     35          10        269    80    Medium  59        12
4  7.40       117    100           4        466    97    Medium  55        14
5  4.15       141     64           3        340   128       Bad  38        13
6 10.81       124    113          13        501    72       Bad  78        16
  Urban  US
1   Yes Yes
2   Yes Yes
3   Yes Yes
4   Yes Yes
5   Yes  No
6    No Yes
attach(Carseats)

Now, we create a multiple linear regression with some interaction terms:-

lm.fit <- lm(Sales ~ . + Income*Advertising + Price*Age, data=Carseats)
summary(lm.fit)

Call:
lm(formula = Sales ~ . + Income * Advertising + Price * Age, 
    data = Carseats)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.9208 -0.7503  0.0177  0.6754  3.3413 

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)         6.5755654  1.0087470   6.519 2.22e-10 ***
CompPrice           0.0929371  0.0041183  22.567  < 2e-16 ***
Income              0.0108940  0.0026044   4.183 3.57e-05 ***
Advertising         0.0702462  0.0226091   3.107 0.002030 ** 
Population          0.0001592  0.0003679   0.433 0.665330    
Price              -0.1008064  0.0074399 -13.549  < 2e-16 ***
ShelveLocGood       4.8486762  0.1528378  31.724  < 2e-16 ***
ShelveLocMedium     1.9532620  0.1257682  15.531  < 2e-16 ***
Age                -0.0579466  0.0159506  -3.633 0.000318 ***
Education          -0.0208525  0.0196131  -1.063 0.288361    
UrbanYes            0.1401597  0.1124019   1.247 0.213171    
USYes              -0.1575571  0.1489234  -1.058 0.290729    
Income:Advertising  0.0007510  0.0002784   2.698 0.007290 ** 
Price:Age           0.0001068  0.0001333   0.801 0.423812    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.011 on 386 degrees of freedom
Multiple R-squared:  0.8761,    Adjusted R-squared:  0.8719 
F-statistic:   210 on 13 and 386 DF,  p-value: < 2.2e-16

We use the contrasts() function to display the dummy coding that R uses for qualitative variables such as ShelveLoc. We can use contrasts() to change the dummy values for different factor levels.

contrasts(ShelveLoc)
       Good Medium
Bad       0      0
Good      1      0
Medium    0      1

3.6.7 Writing Functions

We now write the function to load both libraries ISLR and MASS.

LoadLibraries <- function(){
  library(MASS)
  library(ISLR)
  print("Libraries MASS and ISLR have been loaded!")
}
LoadLibraries()
[1] "Libraries MASS and ISLR have been loaded!"