Common words in talks during posit::conf (2023-24)
Wordclouds showing the common words during the talks given in posit::conf
#TidyTuesday
{ggwordcloud}
Author
Aditya Dahiya
Published
January 11, 2025
About the Data
The dataset on posit::conf talks provides insights into sessions held during posit::conf in 2023 and 2024, focusing on R and Python programming languages and their applications in data science. The data was curated by Jon Harmon and includes speaker details, session types, track titles, and abstracts for 2023, as well as YouTube links for 2024 talks. This information allows exploration of recurring speakers, shared themes, and sentiment analysis across the event’s tracks. The data is accessible through the tidytuesdayR package or directly via GitHub links.
Figure 1: Two wordclouds, one each for 2023 and 2024, and the size of words represents the commonness of the word during that year. The orange words represent words that occurred only during that year.
How I made this graphic?
Loading required libraries, data import & creating custom functions.
Code
# Data Import and Wrangling Toolslibrary(tidyverse) # All things tidy# Final plot toolslibrary(scales) # Nice Scales for ggplot2library(fontawesome) # Icons display in ggplot2library(ggtext) # Markdown text support for ggplot2library(showtext) # Display fonts in ggplot2library(colorspace) # Lighten and Darken colourslibrary(patchwork) # Compiling Plotslibrary(tidytext) # Getting words analysis in Rlibrary(ggwordcloud) # Creating Word-Clouds with ggplot2# Option 2: Read directly from GitHubconf2023 <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-01-14/conf2023.csv')conf2024 <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-01-14/conf2024.csv')
Visualization Parameters
Code
# Font for titlesfont_add_google("M PLUS 1 Code",family ="title_font") # Font for the captionfont_add_google("Saira Extra Condensed",family ="caption_font") # Font for plot textfont_add_google("Nova Mono",family ="body_font") showtext_auto()# A base Colourbg_col <-"white"seecolor::print_color(bg_col)# Colour for highlighted texttext_hil <-"grey30"seecolor::print_color(text_hil)# Colour for the texttext_col <-"grey15"seecolor::print_color(text_col)# Define Base Text Sizebts <-90# Caption stuff for the plotsysfonts::font_add(family ="Font Awesome 6 Brands",regular = here::here("docs", "Font Awesome 6 Brands-Regular-400.otf"))github <-""github_username <-"aditya-dahiya"xtwitter <-""xtwitter_username <-"@adityadahiyaias"social_caption_1 <- glue::glue("<span style='font-family:\"Font Awesome 6 Brands\";'>{github};</span> <span style='color: {text_hil}'>{github_username} </span>")social_caption_2 <- glue::glue("<span style='font-family:\"Font Awesome 6 Brands\";'>{xtwitter};</span> <span style='color: {text_hil}'>{xtwitter_username}</span>")plot_caption <-paste0("**Data:** posit::conf Rachael Dempsey & Jon Harmon", " | **Code:** ", social_caption_1, " | **Graphics:** ", social_caption_2 )rm(github, github_username, xtwitter, xtwitter_username, social_caption_1, social_caption_2)# Add text to plot-------------------------------------------------plot_title <-"posit::conf themes"plot_subtitle <-"These wordclouds show the most common words, (larger size depicts<br>more common words), occuring in the abstract of talks in posit::conf<br>for 2023 and 2024. <b style='color:orange'>Some words</b> occur only in that year."
# Saving a thumbnaillibrary(magick)# Saving a thumbnail for the webpageimage_read(here::here("data_vizs", "tidy_posit_conf.png")) |>image_resize(geometry ="x400") |>image_write( here::here("data_vizs", "thumbnails", "tidy_posit_conf.png" ) )
Session Info
Code
# Data Import and Wrangling Toolslibrary(tidyverse) # All things tidy# Final plot toolslibrary(scales) # Nice Scales for ggplot2library(fontawesome) # Icons display in ggplot2library(ggtext) # Markdown text support for ggplot2library(showtext) # Display fonts in ggplot2library(colorspace) # Lighten and Darken colourslibrary(patchwork) # Compiling Plotslibrary(tidytext) # Getting words analysis in Rlibrary(ggwordcloud) # Creating Word-Clouds with ggplot2sessioninfo::session_info()$packages |>as_tibble() |>select(package, version = loadedversion, date, source) |>arrange(package) |> janitor::clean_names(case ="title" ) |> gt::gt() |> gt::opt_interactive(use_search =TRUE ) |> gtExtras::gt_theme_espn()
Table 1: R Packages and their versions used in the creation of this page and graphics